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Microarray data should be interpreted in the context of existing biological 
knowledge. Here we present integrated analysis of microarray data and gene 
function classification data using Homogeneity Analysis. Homogeneity Analysis is a 
graphical multivariate statistical method for analyzing categorical data. It converts 
categorical data into graphical display. By simultaneously quantifying the 
microarry-derived gene groups and gene function categories, it captures the 
complex relations between biological information derived from microarray data and 
the existing knowledge about the gene function. Thus, Homogeneity Analysis 
provides a mathematical framework for integrating the analysis of microarray data 
and the existing biological knowledge.  
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Introduction 
Microarray has become a powerful tool for biomedical 
research. It detects the expression levels of thousands 
of genes simultaneously. Huge amount of genome-
wide gene expression data have been generated using 
microarrays. However, microarray data by themselves 
tell us very little about the underlying biological 
processes. On the other hand, a lot of biological 
knowledge have been obtained by conventional 
biochemical or genetic methods and have been stored 
in public databases, such as MIPS Functional 
Classification Catalogue (Mewes et al. 2002), KEGG 
pathway database (Kanehisa et al. 2002) and Gene 
Ontology (The Gene Ontology Consortium 2000). 
These functional classification systems represent well-
organized knowledge about gene functions. In this 
paper, we use Homogeneity Analysis to integrate the 
analysis of microarray data and existing knowledge 
about gene function. Homogeneity Analysis is a 
graphical multivariate method. It reveals the complex 
relations between microarray-derived gene groups and 
gene functional categories, and provides a global view 
of patterns of the correlations between gene groups 
derived from multiple types of data. It may help 
investigators to gain insights into the biological 
processes underlying microarray data by 
systematically connecting new data to existing 
biological knowledge. 

Homogeneity Analysis is mathematically equivalent to 
Multiple Correspondence Analysis under some 
conditions1 (Michailidis and de Leeuw 1998; 
Greenacre and Hastie 1987), which is not satisfied in 
the integrated analysis of microarray data and gene 
function information. Simple Correspondence 
Analysis (Benzecri 1973; de Leeuw and van 
Rijckevorsel 1980; Greenacre 1993) has been applied 
to microarray data to analyze the associations between 
genes and samples (Waddell and Kishino 2000; 
Kishino and Waddell 2000; Fellenberg et al. 2001). 
The previous works focus only on microarray data. 
Gene function information and other biological 
knowledge have not been integrated into the analysis. 
Homogeneity Analysis is a more general and flexible 
framework that can accommodate multiple types of 
data and utilize them in an integrated analysis. It 
allows us to analyze and visualize microarray data and 

gene function information simultaneously.  This work 
is a new attempt to integrate the analysis of microarray 
data and existing biological knowledge in a single 
mathematical framework. 

                                                 
1 Homogeneity Analysis is equivalent to Multiple 
Correspondence Analysis if all the row margins of the 
indicator table are equal. 

Materials and Methods 
Indicator table – unified coding of the microarray-
derived gene groups and gene function categories 

Microarrays are often used for identifying genes that 
are differentially expressed among different 
conditions. The groups of genes that are up-regulated 
or down-regulated in the testing sample (relative to the 
reference sample) can be selected. Thus, for each 
experimental condition, we can create two categories 
 one contains genes that are up-regulated under the 
condition and the other contains genes that are down-
regulated under the condition.  

Many computational methods have been developed for 
analyzing microarray data. Sophisticated analysis of 
large microarray dataset often results in overlapping 
gene groups such as transcriptional clusters (Wu et al. 
2002; Lazzeroni and Owen 2002; Lee and Batzoglou 
2003), biclique (Tanay et al. 2002), transcriptional 
modules (Ihmels et al. 2002; Segal et al. 2003) and 
genetic modules (Stuart et al. 2003). These gene 
groups are also microarray-derived categorical data.  

Gene function classification systems assign genes to 
function categories. Gene classification data is also 
categorical data. We use an indicator table to code the 
different types of categorical data (Table 1). Each row 
contains the information of a gene – its membership to 
the gene groups and the function categories. Only 1 
and 0 can occur in the indicator table. A “1” means a 
gene belongs to the corresponding category while a 
“0” means it does not. 

Homogeneity Analysis  

Homogeneity Analysis is a graphical multivariate 
method for analyzing categorical data. It has been used 
to display the main structures and regularities of 
complex data sets (de Leeuw and van Rijckevorsel 
1980; de Leeuw 1984; Michailidis and de Leeuw 
1998). Points in p -dimensional space ( p  is the 
number of dimensions) are used to represent categories 
and genes. Let X  be the matrix containing the 
coordinates of the 

pN ×
N  genes, and Y the pM × matrix 

containing the coordinates of the M categories, a loss 
function is defined as: 
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where G is indicator table. If edges are used to connect 
each category and the genes belonging to that 
category, the loss function is the total squared length 
of the edges. We used an Alternating Least Squares 
(ALS) algorithm (Michailidis and de Leeuw 1998) to 
minimize the loss function. The minimization is 
subject to two restrictions: 

pINXX =′ ,     (2) 

0=′Xu ,     (3) 

where  is the vector of ones. The first restriction is 
for avoiding the trivial solution corresponding to 

and . The second one requires the points 
to be centered around the origin. 

u

0=X 0=Y

The ALS algorithm iterates the following steps until it 
converges:  

First, the loss function is minimized with respect to Y  
for fixed X . The normal equation is  

XGCY ′= ,     (4) 

where  is the transpose matrix of G ,   is the 
diagonal matrix containing the column sums of G . 
The solution of Eq.4 is  

G′ C

XGCY ′= −1ˆ      (5) 

Second, the loss function is minimized with respect to 
X for fixed Y. The normal equation is  

GYRX =      (6) 

where R  is the diagonal matrix containing the row 
sums of G . Therefore, we get that 

GYRX 1ˆ −=      (7) 

Third, the coordinates of the genes are centered and 
orthonormalized by the modified Gram-Schmidt 
procedure (Golub and van Loan 1989), 

)(WGRAMNX = ,    (8) 

where W ,   (9) )/ˆ(ˆ NXuuX ′−=

This solution is called HOMALS solution 
(Homogeneity Analysis by Means of Alternating Least 
Squares). Here we list some basic properties of the 
Homals solution, which are useful for interpreting of 

the result of homogeneity analysis (Greenacre and 
Hastie 1987; Michailidis and de Leeuw 1998): 

1) Category points and gene points are 
represented in a joint space, 

2) A category point is the centroid of genes 
belonging to that category, 

3) Genes with the same response pattern (i.e. 
identical rows in the indicator table) receive 
identical positions. In general, the distance 
between two genes points is related to the 
“similarity” of their profiles,  

4) Genes with a “unique” profile will be located 
further away from the origin, whereas genes 
with a profile similar to the “average” one will 
be located closer to the origin. 

Results and Discussion 
In this section, we will use two microarray datasets 
and two gene function classification systems to 
illustrate the applications of our method. 

Rosetta Compendium Dataset 

We applied Homogeneity Analysis to the yeast gene 
expression data from Rosetta Compendium (Hughes et 
al 2000a), which includes 300 mutations and chemical 
treatment experiments.  We excluded the mutant 
strains that are aneuploid for chromosomes or 
chromosomal segments because the aneuploidy often 
leads to chromosome-wide expression biases (Hughes 
et al. 2000b). The data was filtered to include only 
experiments with 20 to 100 genes up- or down-
regulated greater than 2 fold, and significant at 
P≤ 0.01 (according to the error model described in 
Hughes et al. 2000a); and only genes that are up- or 
down-regulated at greater than 2 fold, and at P≤ 0.01, 
in 2 or more selected experiments. The filtered dataset 
includes 494 genes and 48 experiments.  

Two groups of genes were selected from each 
experiment: 1) genes that are up-regulated at greater 
than 2 fold, and at P≤ 0.01; 2) genes that are down-
regulated at greater than 2 fold, and at P≤ 0.01. The 
microarray-derived gene groups are encoded using an 
indicator table. Each experiment has two categories 
(up-regulation and down-regulation). The selected 
genes are represented by “1”s in the indicator table. 
The categories (columns) with less than two “1”s and 
genes (rows) with less than two “1”s were deleted. 
Now we have 416 genes and 46 categories. We call 
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these categories “expression categories”. Seventeen 
MIPS functional categories (see the legend for Figure 
1) were added to the indicator table. The indicator 
table contains 416 genes and 63 categories. We 
performed Homogeneity Analysis based on the 
indicator table. The result is shown in Figure 1. The 
red (green) category points represent the groups of 
genes that are up (down) -regulated in the 
corresponding experiments and the blue points 
represent functional categories. A category point is 
located at the centroid of the genes that belong to it. 
The small gray points represent genes, each of them 
may represent one gene or a group of genes with same 
“response pattern”, which means the genes have the 
same 0 and 1 strings in their rows in the indicator 
table. Because the total squared lengths of the edges 
are minimized, the categories that have large 
intersection set are likely to be pulled together by the 
common genes they share. The distances between the 
category points reflect the similarities between the 
gene contents of the categories. The plot shows the 
patterns of correlations between the groups of 
differentially expressed genes under various conditions 
and groups of genes with various functions.  

The categories shown in Figure 1 approximately form 
four groups. Group A (left) contains ste12.down (40)2, 
ste18.down (41), ste7.down (42), fus3_kss1.down3 
(32), rad6.down (35), hog1.up (10), dig1_dig2.up (7), 
sst2.up (20), pheromone response, mating-type 
determination, sex-specific proteins (47), cell 
differentiation (48), cell fate (50), chemoperception 
and response (52). Here we see the following 
functional categories: pheromone response, mating-
type determination, sex-specific proteins (47) (a 
subcategory of cell differentiation (48) and cell fate 
(50)) and chemoperception and response (52). This is 
consistent with the expression categories we observed 
in this region. Ste7, ste12, ste18, fus3 and kss1 belong 
to the pheromone signaling pathway (http://genome-
www.stanford.edu/Saccharomyces/), removing these 
genes turns off the expression of pheromone-response 
genes. Ste7.down (42), ste12.down (40) and 
ste18.down (41) represent the groups of genes that are 
down-regulated when ste7, ste12 and ste18 are 

knocked out respectively. It is known that dig1 dig2 
double mutants show constitutive mating pheromone 
specific gene expression and invasive growth and sst2 
null mutants exhibit increased sensitivity to mating 
factors (http://genome-
www.stanford.edu/Saccharomyces/). Consistently, we 
see dig1_dig2.up (7) and sst2.up (20) in this region. 
The expression of rad6 is induced early in meiosis and 
peaks at meiosis I, the mutant shows repression of 
retrotransposition, meiotic gene conversion and 
sporulation (http://genome-
www.stanford.edu/Saccharomyces/). Hog1 is in the 
signaling pathway that responds to high osmolarity 
glycerol (Robberts et al. 2000), the presentation of 
hog1.up (10) in this region reflects the crosstalks 
between the HOG (High Osmolarity Glycerol) 
pathway and the pheromone pathway (Sprague 1998). 
This method reveals positive correlations and negative 
correlations between the gene expression profiles of 
the samples simultaneously by displaying up-
regulation categories and down-regulation categories 
together. Clustering analysis failed to reveal the 
correlation between the dig1 dig2 double mutant and 
the mutants of the pheromone signaling pathway genes 
(ste7, ste12, ste18, fus3_kss1), the dig1 dig2 double 
mutant is located far away from the pheromone 
signaling pathway genes in the clustering dendrogram 
(Hughes et al. 2000a; 
http://download.cell.com/supplementarydata/cell/102/
1/109/DC1/Tbl3ClnB.jpg). This is because the double 
knockout of dig1 and dig2 lead to constitutive mating 
pheromone specific gene expression (up-regulation) 
while the knockouts of pheromone signaling pathway 
genes turn off mating pheromone specific gene 
expression (down-regulation).  

                                                 

                                                

2 “ste.down” denotes the  group of genes that are down-
regulated in the mutant in which ste12 is knocked out. In 
Figure 1, the category is labeled by the number in the 
parenthesis, see the legend for Figure 1. 
3 Double mutant in which both fus3 and kss1 are knocked 
out. 

Group B (lower right) contains clb2.up (5), hda1.up 
(9), yhl029c.up (25), ckb2.down (30), gcn4.down (33), 
vps8.down (43), amino acid biosynthesis (46), amino 
acid metabolism (49), nitrogen and sulfur metabolism 
(56). Most of the genes involved in amino acid 
metabolism (the small cyan points in Figure 1) are 
located in this region. The expression categories 
(clb2.up (5), hda1.up (9), yhl029c.up (25), ckb2.down 
(30), gcn4.down (33), vps8.down (43)) are enriched by 
the genes of two functional categories (amino acid 
biosynthesis (46), amino acid metabolism (49)) at very 
significant levels, (P<10-5)4. This means the knockouts 

 
4 The P value is the probability of observing at least k genes 
in the intersection set of an expression category of size n 
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of these genes (clb2, hda1, yhl029c, ckb2, gcn4 and 
vps8) impact many more genes involved in amino acid 
biosynthesis/metabolism than that could happen by 
chances. Gcn4 is a transcriptional activator of amino 
acid biosynthetic genes (http://genome-
www.stanford.edu/Saccharomyces/). As far as we 
know, there is no literature describing the roles of the 
other five genes (clb2, hda1, yhl029c, ckb2 and vps8) 
in amino acid biosynthesis/metabolism. This result 
provides hints to some possible new functions of these 
genes. 

Group C (middle) contains cup5.up (6), 
fks1(haploid).up (8), med2(haploid).up (14), 
swi6(haploid).up (21), vma8.up (23), homeostasis of 
cations (51), ionic homeostasis (53), regulation of / 
interaction with cellular environment (54), cell wall 
(57), plasma membrane (61). Null mutant of cup5 is 
copper sensitive. Fks1 is involved in cell wall 
organization and biogenesis (http://genome-
www.stanford.edu/Saccharomyces/). There are 57 and 
61 genes in the expression categories cup5.up and 
vma8.up respectively, the intersection set of these two 
categories contains 46 genes. The overlapping is very 
significant ( ). The knockout of cup5 or 
vma8 makes largely the same group of genes over-
express. Med2(haploid).up (14) and swi6(haploid).up 
(21) do not significantly overlap with other categories 
in this region. This may reflect the limitation of the 
two-dimensional visualization of high dimension data. 

37102 −×=P

Group D (upper right) contains ade2(haploid).up (0), 
aep2.up (1), afg3(haploid).up (2), cem1.up (3), 
msu1.up (15), top3(haploid).up (22), ymr293c.up (26), 
lovastatin.up (28), dot4.down (31), c-compound and 
carbohydrate metabolism (55), lipid, fatty-acid and 
isofenoid metabolism (58), cell rescue, defense and 
virulence (59), energy (60), detoxification (62). All the 
function categories in this region belong to three 
super-categories – energy (60), cell rescue, defense 
and virulence (59) (which includes detoxification (62)) 

and metabolism (which includes c-compound and 
carbohydrate metabolism (55) and lipid, fatty-acid and 
isofenoid metabolism (58)). Ade2 is a purine-base 
metabolism gene (http://genome-
www.stanford.edu/Saccharomyces/). Aep2 mutant is 
non-conditional respiratory mutant and unable to 
express the mitochondrial OLI1 gene afg3. Cem1, 
msu1, ymr293c are mitochondrial genes 
(http://genome-www.stanford.edu/Saccharomyces/) 
and are involved in energy generation and processing.  

                                                                                  
and a function category of size f, assuming there is no 
association between the expression category and the 
function category, 
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genes in the indicator table. 
 

Yeast Transcription Modules 

Ihmels et al. identified 86 context-dependent and 
potentially overlapping transcription modules by 
mining yeast microarray data of more than 1,000 
experiments (Ihmels et al. 2002; 
http://www.weizmann.ac.il/home/jan/NG/MainFrames
.html). The genes in a module are co-regulated under 
some experimental conditions. The modules reflect the 
modular organization of the yeast transcription 
network. Here we use Homogeneity Analysis to 
present a global view of the relations between the 
modules and their connections to the underlying 
biological processes.  

We selected 72 modules that contain more than 20 
genes and overlap with at least one other selected 
modules. Altogether, the 72 modules contain 2,159 
genes. The modules and 18 biological processes 
defined by Gene Ontology (The Gene Ontology 
Consortium 2000) are quantified using Homogeneity 
Analysis and displayed in two-dimensional space 
(Figure 2). The graph reveals the relations between the 
genes (small gray dots), modules (big black dots) and 
the biological processes (big blue dots). The modules 
related to nitrogen and sulfur metabolism (78, 84) are 
in the lower left corner of the plot; modules related to 
cellular fusion (74), conjugation with cell proliferation 
(76), sporulation (77), response to DNA damage 
stimulus (81), nucleobase, nucleoside, nucleotide and 
nucleic acid metabolism (82), signal transduction (89) 
are in the lower right corner; the upper area of the plot 
is related to electron transport (80), oxidative 
phosphorylation (73), and aldehyde metabolism (85); 
the middle area are related to  carbohydrate 
metabolism (86), response to oxidative stress (87), 
oxygen and reactive oxygen species metabolism (88), 
alcohol metabolism (79), transport (83), lipid 
metabolism (75), protein metabolism (72).  

The function categories that are closely located show 
strong associations. For example, electron transport 
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(80) and oxidative phosphorylation (73) contain 17 
and 25 genes respectively, the intersection set of these 
two categories contains 12 genes. The p-value 
associated with the overlapping is 1 . It is 
well known that electron transport and oxidative 
phosphorylation are closely related biological 
processes. Similar examples include response to 
oxidative stress (87) and oxygen and reactive oxygen 
species metabolism (88) ( ), cell 
proliferation (76) and response to DNA damage 
stimulus (81) ( ). This indicates that 
arrangement of the genes and categories is biologically 
meaningful.  

21105. −×

41104. −×1=p

14100.7 −×=p

The similar modules are grouped together. Module 26 
(22)5, Module 35 (29), Module 48 (40), Module 54 
(45), Module 70 (59) and Module 75 (63) are clustered 
together near the origin.  The sizes of these modules 
are 60, 73, 88, 66, 69, and 72 respectively. The six 
modules share 45 common genes, more than 50% of 
the largest module.  

The associations between modules and biological 
processes are also readily to be found in Figure 2. We 
can see that Module 5 (4), Module 55 (46) and Module 
74 (62) are closely related to the biological process 
“oxidative phosphorylation” (73). The p-value 
associated with the overlapping between “oxidative 
phosphorylation” and the three modules are 

, and  respectively. 
Module 1 (0), Module 51 (42) and Module 57 (48) are 
grouped with “protein metabolism” (72). The p-value 
associated with the overlapping between “protein 
metabolism” and the three modules are 1 , 

and 5  respectively. 

41100.2 −×

4100.4 −×

33109.2 −×

51107. −×

5102.2 −×

72109. −×

Conclusion 
Homogeneity Analysis is a powerful method that is 
capable of integrating the analysis of microarray-
derived gene groups and categorical gene function 
information. It is a useful mathematical framework for 
interpreting microarray data in the context of existing 
biological knowledge. 

Homogeneity Analysis can be used for analyzing the 
relations between any gene groups regardless how they 
are derived. For example, we can group genes 

according to the DNA-binding motifs occurring in 
their up-stream regions, the protein domains they 
encode or the sub-cellular locations of the products of 
the genes. The relations between various 
classifications of genes can be revealed using this 
method.  

                                                 
5 In Figure 2, the module is labeled by the number in the 
parenthesis, see the legend for Figure 2. 

We developed a computer program to implement the 
method. It is free for nonprofit research and is 
downloadable at http://compbio.utmem.edu/Gifi.php. 
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Table 1 Indicator tables 

 

(A) 
 Sample1.up Sample1.down Sample2.up Sample2.down … Function1 Function2 …  

Gene1 1 0 0 1 … 0 0 …  

Gene2 0 1 0 0 … 0 0 …  

Gene3 0 0 0 1 … 1 0 …  

Gene4 1 0 1 0 … 0 1 …  

Gene5 1 0 0 0 … 1 0 …  

Gene6 1 0 1 0 … 0 1 …  

… … … … … … … … …  

 

(B) 
 Module1 Module2 Module3 Module4 … Function1 Function2 …  

Gene1 1 1 0 1 … 1 1 …  

Gene2 0 1 1 0 … 0 1 …  

Gene3 0 0 0 1 … 1 0 …  

Gene4 0 1 1 0 … 0 1 …  

Gene5 1 0 0 0 … 1 0 …  

Gene6 1 0 1 1 … 0 0 …  

… … … … … … … … …  

 
 “SampleX.up” represents the group of genes that are up-regulated in sample X (comparing to the 
reference sample); “SampleX.down” denotes the groups of genes that are down regulated in 
sample X; “FunctionX” denotes gene function categories; ModuleX is the Xth transcriptional 
module. A “1” means a gene belongs to the corresponding category while a “0” means it does 
not. 
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Figure 1 
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Figure 1. Homogeneity Analysis for Rosetta Compendium data and MIPS functional catalogue. In this bipartite plot, the 
small gray dots represent genes; the red (up-regulation) and green (down-regulation) dots represent expression categories, 
and the blue dots represent MIPS gene function categories. The categories are labeled by numbers: 

 
0: ade2 (haploid).up 
1: aep2.up 
2: afg3 (haploid).up 
3: cem1.up 
4: cka2.up 
5: clb2.up 
6: cup5.up 
7: dig1_dig2 (haploid).up 
8: fks1 (haploid).up 
9: hda1.up 
10: hog1(haploid).up 
11: isw1_isw2.up 
12: kim4.up 
13: kin3.up 
14: med2 (haploid).up 
15: msu1.up 
16: qcr2 (haploid).up 
17: rrp6.up 
18: rtg1.up 
19: spf1.up 
20: sst2 (haploid).up 
21: swi6 (haploid).up 
22: top3 (haploid).up 
23: vma8.up 
24: yar014c.up 
25: yhl029c.up 
26: ymr293c.up 
27: HU.up 
28: Lovastatin.up 
29: Terbinafine.up 
30: ckb2.down 
31: dot4.down 
32: fus3,kss1 (haploid).down 

33: gcn4.down 
34: med2 (haploid).down 
35: rad6 (haploid).down 
36: rpl12a.down 
37: rtg1.down 
38: sir4.down 
39: sod1 (haploid).down 
40: ste12 (haploid).down 
41: ste18 (haploid).down 
42: ste7 (haploid).down 
43: vps8.down 
44: yel033w.down 
45: ymr014w.down 
46: AMINO ACID BIOSYNTHESIS 
47: PHEROMONE RESPONSE, MATING-TYPE DETERMINATION, SEX-
SPECIFIC PROTEINS 
48: CELL DIFFERENTIATION 
49: AMINO ACID METABOLISM 
50: CELL FATE 
51: HOMEOSTASIS OF CATIONS 
52: CHEMOPERCEPTION AND RESPONSE 
53: IONIC HOMEOSTASIS 
54: REGULATION OF / INTERACTION WITH CELLULAR 
ENVIRONMENT 
55: C-COMPOUND AND CARBOHYDRATE METABOLISM 
56: NITROGEN AND SULFUR METABOLISM 
57: CELL WALL 
58: LIPID, FATTY-ACID AND ISOPRENOID METABOLISM 
59: ENERGY  
60: CELL RESCUE, DEFENSE AND VIRULENCE 
61: PLASMA MEMBRANE 
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Figure 2 
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Figure 2. Homogeneity Analysis for yeast transcription modules and the biological processes defined by Gene Ontology. 
In this bipartite plot, the small gray dots represent genes; the black dots represent modules, and the blue dots represent 
biological processes defined by Gene Ontology. The categories are labeled by numbers: 
 
0: Module 1 
1: Module 2 
2: Module 3 
3: Module 4 
4: Module 5 
5: Module 6 
6: Module 7 
7: Module 8 
8: Module 10 
9: Module 11 
10: Module 12 
11: Module 13 
12: Module 15 
13: Module 16 
14: Module 17 
15: Module 18 
16: Module 19 
17: Module 20 
18: Module 21 
19: Module 22 
20: Module 24 
21: Module 25 
22: Module 26 
23: Module 27 
24: Module 28 
25: Module 29 
26: Module 30 
27: Module 32 
28: Module 34 
29: Module 35 
30: Module 36 
31: Module 37 
32: Module 40 
33: Module 41 
34: Module 42 
35: Module 43 

36: Module 44 
37: Module 45 
38: Module 46 
39: Module 47 
40: Module 48 
41: Module 50 
42: Module 51 
43: Module 52 
44: Module 53 
45: Module 54 
46: Module 55 
47: Module 56 
48: Module 57 
49: Module 58 
50: Module 59 
51: Module 61 
52: Module 62 
53: Module 63 
54: Module 64 
55: Module 65 
56: Module 66 
57: Module 67 
58: Module 68 
59: Module 70 
60: Module 71 
61: Module 73 
62: Module 74 
63: Module 75 
64: Module 76 
65: Module 77 
66: Module 80 
67: Module 81 
68: Module 82 
69: Module 84 
70: Module 85 
71: Module 86 

72: protein metabolism 
73: oxidative phosphorylation 
74: conjugation with cellular fusion 
75: lipid metabolism 
76: cell proliferation 
77: sporulation 
78: sulfur metabolism 
79: alcohol metabolism 
80: electron transport 
81: response to DNA damage stimulus 
82: nucleobase, nucleoside, nucleotide and 
nucleic acid metabolism 
83: transport 
84: nitrogen metabolism 
85: aldehyde metabolism 
86: carbohydrate metabolism 
87: response to oxidative stress 
88: oxygen and reactive oxygen species 
metabolism 
89: signal transduction 
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